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We demonstrate that a time delay in weak coupling between two self-sustained oscillators can be estimated
from the observed time series data. We present two methods which are based on the analysis of interrelations
between the phases of the signals. We show analytically and numerically that irregularity of the phase dynam-
ics (due to the intrinsic noise or chaos) is essential for determination of the delay. We compare and contrast
both methods to the standard cross-correlation analysis.
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I. INTRODUCTION

Many natural phenomena can be described by coupled
oscillator models. Quite often there exists a certaintime de-
lay in coupling, which can, e.g., significantly influence the
dynamical behavior and synchronization properties[1–6].
Indeed, in many cases the propagation time of a signal
through a pathway connecting the interacting subsystems is
not small compared to the characteristic oscillation period,
and, hence, the delay in coupling must be taken into account.
Examples include laser systems[7], a living coupled oscilla-
tor system with the plasmodium ofPhysarum polycephalum
[8], cardiorespiratory system[9], and neuronal populations
[10–12].

In this paper we address the problem whether the delay in
weak couplingof noisy limit cycle or chaotic oscillators can
be estimated from the time series of the processes. Note that
the problem is nontrivial, because the dynamical behavior
(e.g., a synchronization pattern) in the presence of delay in
coupling may be quite similar to that of instantaneously
coupled systems. We demonstrate that, counterintuitively,
identification of the time delay is possible if the interacting
oscillators are sufficientlynoisy. Noise plays a constructive
role because it breaks the coherence between the current and
delayed states, and therefore allows us to distinguish them. A
similar role can be played by chaos; see[13–21] for a de-
scription of methods for estimation of internal delay in a
nonlinear system exhibiting chaotic dynamics and[22] for
the treatment of a linear stochastic system. We also discuss
the distinction between the delay and the phase difference of
two signals and emphasize that in the case we analyze here
the delay cannot be accurately estimated by means of cross-
correlation or cross-spectral analysis.

The input to the algorithms proposed in this paper are the
series of instantaneous phases. As is usually done in synchro-
nization analysis of multivariate data[23,24], we assume that
we can measure the signals on the outputs of interacting
oscillators and that these signals are appropriate for determi-
nation of the instantaneous phases; for a description and dis-

cussion of phase estimation techniques see[23,24].
The paper is organized as follows. In Sec. II we present

the methods for delay estimation and in Sec. III we analyze
them analytically. In Sec. IV we consider numerical ex-
amples illustrating that the delay in coupling between noisy
and/or chaotic oscillators can be estimated from the series of
instantaneous phases. In Sec. V we discuss our results.

II. PHASE MODEL AND METHODS FOR DELAY
ESTIMATION

As is well known, the description of weakly coupled self-
sustained oscillators can be in a good approximation reduced
to the phase dynamics[24,25]. Hence, in the following the-
oretical analysis we consider coupled phase oscillators de-
scribed by the following general equations:

ḟ1 = v1 + «F1„f1std,f2st − T12d… + j1std, s1d

ḟ2 = v2 + «F2„f1st − T21d,f2std… + j2std,

where f1,2 and v1,2 are phases and natural frequencies of
two oscillators, respectively, andj1,2 are noisy terms,
whereasT12 andT21 are time delays in coupling. Model(1)
describes coupled noisy limit cycle oscillators as well as
some chaotic systems[24] ; in the latter case the irregular
termsj1,2 reflect the chaotic amplitude dynamics. For clarity
of presentation and simplicity of the analytical treatment we
first concentrate on the case of two unidirectionally coupled
systems with the simplest coupling function:

ḟ1 = v1 + « sin ff2st − Td − f1std − ag + j1std, s2d

ḟ2 = v2 + j2std,

wherea is a constant phase shift. Here we assume that the
noisy forces perturbing two oscillators are Gaussian, inde-
pendent and d correlated kj1,2stdj1,2st+tdl=2D1,2dstd,
kj1stdj2st+tdl=0. Later, in Sec. IV we explain qualitatively
and confirm numerically the validity of our approach for
bidirectional coupling and more general coupling functions
F1,F2 as well.

We discuss first possible types of dynamical behavior in
system(2). The most important effect here is synchroniza-
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tion: for sufficiently large coupling strength« and for van-
ishing noise there is a stable solution with a constant phase
shift between the oscillators. It is easy to show that for«
ù uv1−v2u there exist a synchronous solution with a constant
phase difference

c0 = f2std − f1std = arcsinSv2 − v1

«
D + v2T + a. s3d

For «, uv1−v2u, Eqs.(2) exhibit quasiperiodicity, when the
phase difference grows with time. If noise is present, the
perfect synchrony is destroyed: the phase difference exhibits
small fluctuations aroundc0 with possible relatively rapid
2p jumps(phase slips). In a quasiperiodic state, fluctuations
are superimposed on the deterministic growth of the phase
difference due to the detuning between the oscillators(see,
e.g.,[24] for details).

It is important that if the noise in the driverj2 is absent,
then the delay timeT cannot be inferred. Indeed, let us as-
sume that the form of the coupling function in Eqs.(2) is
known exactly, but its parameters« anda are unknown. We
see that the delay and phase shifta appear in the argument of
the sine function as a combinationv2T+a. Hence, in the
purely deterministic case there is no way to distinguish be-
tween two different delaysT8 andT9, becausea can be ar-
bitrary and therefore the conditionv2T8+a8=v2T9+a9 can
be always fulfilled. Moreover, we emphasize that the delay in
coupling cannot be inferred from the observation of the
phase shiftc0 between synchronized oscillators. Indeed, in
the synchronous regime both phases grow in time with a
common rate[v2t in the example of system(2)] and differ by
a constantc0 that is determined by the detuningv2−v1,
parameters of coupling« anda, and delayT (the latter two
appear again as the combinationv2T+a), and the contribu-
tion of these factors cannot be separated. Hence, measure-
ments of the phase difference cannot provide the estimate of
the delay, as sometimes is assumed in physiological and
medical literature;1 indeed, the presence of the delay gener-
ally implies presence of a(constant in average) phase differ-
ence, but not vice versa.

Below we demonstrate that noise plays a constructive role
in the context of determination of a delayed interaction. So,
in system(2), the noisej2 breaks the coherence of the phase
f2 and therefore the time delay is not equivalent to the phase
shift. In the rest of this paper we develop and discuss the
methods for determination of the delay time in the coupling
from the observation of the phasesf1std and f2std under
assumption that their evolution can be approximated by Eqs.
(1).

A. Delay estimation based on a synchronization index

In this method it is assumed that the oscillators are nearly
synchronized; i.e., the phase difference between the oscilla-

tors most of the time exhibits small fluctuations around a
stable value[cf. Eq. (3)], possibly intermingled with rare
phase slips—i.e., relatively rapid jumps when the phase dif-
ference gains ±2p. Consequently, there is a high correlation
between the values off1std and f2st−Td, as the retarded
value off2 directly governs the phasef1. On the other hand,
the correlation betweenf1std and f2st−td for tÞT is ex-
pected to be smaller. To quantify this, one can characterize
the relation between twoshifted-in-timetime series of phases
f1,2 by a shift-dependent synchronization index[26]

r2std = kcosff1std − f2st − tdgl2 + ksin ff1std − f2st − tdgl2,

s4d

wherekl denote averaging over time. For the shiftt=0 the
index reduces to the index used in synchronization analysis
for characterization of the strength of phase interrelation be-
tween two signals[23,27]. One can expect thatrstd has a
maximum att=T. However, this is not exactly true: as we
show theoretically in Sec. III A and confirm numerically in
Sec. IV below, the position of the maximum of the depen-
dence of the synchronization indexr on the time shiftt
systematically overestimates the delay. Moreover, in the case
when the oscillators are far from synchrony, the synchroni-
zation index is small for all shiftst and therefore does not
yield the estimate of the delay. Thus, the advantages of this
approach—namely, its simplicity and absence of
parameters—are accompanied by several drawbacks which
can be overcome by the technique presented below in Sec.
II C.

B. Cross-correlation function

The most common tool that can be tested for the detection
of the delay is the cross-correlation function. Given the time
series of phases, the(normalized) cross-correlation function
between the two oscillations is calculated for the observables
cosf1 and cosf2 as

Cstd = 2kcosff1stdg cosff2st − tdgl,

where the fluctuations of the amplitudes are neglected. As-
suming that the systems are close to synchrony, we can ex-
press the phases asf1,2=vst− t0d+w1,2, where v is some
frequency of orderv<sv1+v2d /2 [it is v=v2 for unidirec-
tional coupling described by Eqs.(2)] and w1,2 are slow
phases. In the computation, we have to average over the
ensemble of realizations with random initial timest0; hence,
the terms containing sinvt0 and cosvt0 vanish. With the
introduced notations we obtain

Cstd = 2kcosfvst − t0d + w1stdg cosfvst − t0d − vt

+ w2st − tdgl

= kcosfw1std − w2st − td + vtgl

= cosvt kcosfw1std − w2st − tdgl

− sin vt ksin fw1std − w2st − tdgl

= Astdcossvt + ad,

1In a number of papers the phase of the cross spectrum at a domi-
nating frequency is recomputed into a delay. Our consideration
shows that this procedure, appropriate for input-output systems,
fails in case of coupled self-sustained oscillators.
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where the envelope of the cross-correlation function is de-
fined via

A2std = kcosfw1std − w2st − tdgl2 + ksin fw1std − w2st − tdgl2

and cosa=kcosfw1std−w2st−tdgl /A. Noting that f1std
−f2st−td=w1std−w2st−td+const and comparing with Eq.
(4) we obtain

Astd = rstd.

Note, however, that if the fluctuations of the amplitudes of
the observablesx1std andx2std are not small, then the enve-
lope of the cross-correlation function of these processes can
essentially deviate from the synchronization index(cf. Fig. 2
below).

C. Delay estimation based on model fitting

This approach to delay estimation is based on the recon-
struction of the first equation in Eqs.(2) from the seriesf1,2.
Namely, we suggest to fit the numerically estimated phase
derivative df1/dt—that is, the instantaneous frequency of
the first oscillator—by a function off1std and f2st−td, for
different values of the shiftt.2 Practically, we try to fit the
finite-difference estimation of the derivativeff1st+Dtd
−f1stdgsDtd−1 with a probe function in the form of the double
Fourier series inf1,2, because in general case the coupling
function is 2p periodic inf1,2. The quality of the fit is char-
acterized by the least-mean-squares errorE. The idea of the
approach is that the dependenceEstd should take a minimum
at t=T. This is confirmed by the theoretical analysis of this
method, performed in Sec. III B, whereas the technical de-
tails and numerical illustration of the approach can be found
in Sec. IV.

III. THEORETICAL ANALYSIS OF THE METHODS

In this section we present an analytical derivation of the
above defined quantitiesrstd and Estd for the basic model
(2) and discuss under which conditions they allow us to de-
termine the delay in the coupling.

A. Synchronization index

Writing the second equation Eqs.(2) for the delayed time
asḟ2st−Td=v2+j2st−Td, we obtain for the phase difference

c = f1std − f2st − Td s5d

the stochastic Adler equation

ċ = n − «sinsc + ad + j1std − j2st − Td, s6d

wheren=v1−v2 is the detuning. The probability distribution
Pscd for the solution of this equation can be found in
[24,28], with the amplitude of the first harmonics giving the
synchronization indexP1scd=rsTd.

Consider now the synchronization indexrstd for tÞT. In
order to compute it, we have to find the probability distribu-
tion of

u = f1std − f2st − td = c + sT − tdv2 + h, s7d

where

h =E
t−t

t−T

j2ssdds s8d

is a Gaussian random number with zero mean and variance
2D2uT−tu. If c andh were independent(this can be taken as
a zero approximation), then the distribution ofu would be
the convolution of the distributions forc andh. In the Fou-
rier domain we can multiply the Fourier transforms, which
gives, for the first harmonics of the distribution,

P1sud = P1scdexps− D2uT − tud

or

rstd = rsTdexps− D2uT − tud. s9d

It can be seen that the synchronization index has a maxi-
mum at t=T; however, in the absence of the noise in the
driver sD2=0d the synchronization index becomes indepen-
dent oft.

To account for correlations we assume that the coupling is
sufficiently strong, so that the fluctuations around the syn-
chronous state are small. In this case we can linearize the
Adler equation(6) around the constant synchronous value
c0=arcsinsn /«d−a and write an equation for the small de-
viation of the phase differenceC=c−c0:

Ċ = − AC + j1std − j2st − Td, s10d

where

A = « cossc0 + ad = Î«2 − n2. s11d

Statistical analysis of this model, details of which are pre-
sented in Appendix A, leads to the following expression:

rstd = e−sD1+D2d/Ae−D2uT−tu

3 5expS2D2

A
s1 − e−st−TdAdD , t ù T,

1, t , T.

s12d

This function has only one maximum, which occurs in do-
main of the argumenttmax.T. Thus, synchronization index
attains its maximum value fort=tmax found from the condi-
tion

− D2 + 2D2e
−stmax−TdA = 0.

Provided the phase of the driver diffuses,D2.0, this gives,
with account of Eq.(11),

tmax= T + ln 2/A = T +
ln 2

Î«2 − n2
. s13d

2We note that in a practical situation we do not have to knowa
priori which system is the driver; see Sec. IV.
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Thus, the described method produces a biased estimate of the
delay, where the bias decreases with the increase of the driv-
ing strength; cf. the numerical results shown in Figs. 3 and 4.

B. Error of model fitting

In this method we try to approximate the right-hand side
(RHS) of the first equation in Eqs.(2), i.e.,

f„f1std,f2st − Td… = v1 + « sin ff2st − Td − f1std − ag + j1std

= v1 − « sinsc + ad + j1std, s14d

by a function off1std andf2st−td, wheret can be positive
or negative. Let our test function be

f8std = v8 + «8 sin ff2st − td − f1std − ã8g.

Using Eq.(7) and denotinga8=ã8+sT−tdv2 we rewrite it as

f8std = v8 − «8 sinsc + h + a8d. s15d

Determination of the parametersv8 ,«8 ,a8 by least-mean-
squares fitting leads to an expression for the error of the fit.
This expression can be obtained analytically for two limit
cases:(i) the oscillators are far from synchrony and(ii ) the
oscillators are very close to synchrony; the calculations for
both cases are given in Appendix B. In the first case we end
with the following expression for the error of the fit[see Eq.
(B1)]:

E2std =
«2

2
s1 − e−2D2uT−tud + kj1

2l. s16d

This error as a function oft has a minimum att=T. Thus
we obtain an estimate of the delayT as an output of the
fitting procedure. The stronger the coupling and the phase
diffusion in the driver, the more pronounced is the minimum.
Its position provides the unbiased estimate of the delay, con-
trary to the estimate provided by the position of the maxi-
mum of the synchronization index. In the close to synchrony
case the error of the fit as a function of shiftEstd also has a
sharp minimum forT=t; the lengthy expression forEstd is
given by Eq.(B2) in Appendix B and illustrated in Fig. 10.

Note that in Eqs.(16) and (B2) the noise intensitykj1
2l

appears as an additive constant. Formally, ford-correlated

noise this quantity diverges. However, this is not important
because practically we fit not the derivative of the phase but
its finite-difference approximationff1st+Dtd−f1stdgsDtd−1.
For the Langevin equation withd-correlated noise such an
estimation contains a regular term that isDt independent and
a noisy term,sDtd−1/2. Therefore, the Eq.(16) becomes

E2std =
«2

2
s1 − e−2D2uT−tud +

2D1

Dt
. s17d

[The same consideration is valid for Eq.(B2).] Thus, the
error of the fit as a function of the shiftEstd contains two
components: the first, the regular one, is independent ofDt
and is determined by the proper choice of the shiftt. On the
contrary, the contribution of the noisy term ist independent
and decreases withDt. Hence, the variation ofE within a
given range of shiftt; i.e., Emax

2 −Emin
2 , is approximately con-

stant, whileEmin
2 is inversely proportional toDt. Correspond-

ingly, the relative variation of the error for the given range of
t will be larger for largerDt. In order to preserve accuracy of
the estimation of the delay time the intervalDt should be,
however, kept small compared to the delay.

IV. NUMERICAL RESULTS

We start with a discussion of general aspects of numerical
implementation of the described methods. The calculation of
the cross-correlation function is standard. For the synchroni-
zation index estimation(SIE) and model fitting estimation
(MFE) methods one has first to compute the phases from
scalar signals; in all examples below this has been done with
the help of the analytic signal method based on the Hilbert
transform (see [23,24]). The calculation ofrstd is then
straightforward, whereas the computation ofEstd requires a
discussion.

The first important point is the substitution of the deriva-
tive ḟ1 by the finite differenceff1st+Dtd−f1stdgsDtd−1.
Namely, we compute the error of the fitE=EDt for thephase
incrementDf1std=f1st+Dtd−f1std. In this way we avoid
the poor operation of numerical derivation of a noisy time
series. Moreover, as discussed above, by increasingDt we
effectively filter out the internal noise of a driven oscillator.
Note that for practical purposes, when there is no need for

FIG. 1. Estimation of the delay in coupling of noisy limit cycle oscillators[Eqs.(18)]. The dotted vertical lines mark the true value of
the delayT. Left panel: error of the fitE as the function of shiftt, computed from the phases obtained via the Hilbert transform(solid line)
and from the phases obtained directly from Eqs.(18) (dotted line), as well as the theoretical curve according to Eq.(17) (bold line). Right
panel: dependence of the synchronization indexr on the shiftt (bold line) and the cross-correlation function(solid line); rstd nearly
coincides with the envelope ofCstd. Note thatrstd dependence provides a biased estimate of the delay.
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comparison of theoretical results with numerics, it is conve-
nient to use thenormalized errorEN. The latter is computed
for the phase increments normalized by their rms value;EN
varies from zero to 1.

Another important issue is the choice of the fitting func-
tion. The natural choice here is a Fourier series. As soon as
the number of terms of this series has been chosen, the error
of fit Estd is obtained via a standard linear regression proce-
dure. With a little effort the significant Fourier terms can be
determined by trial and error—namely, by checking that no
systematic periodic distribution is displayed by the residuals.
Alternatively, the dominant terms can be revealed by means
of the procedure described in Appendix C.

A. Unidirectional coupling

We start our numerical simulations with a consideration
of two coupled noisy limit cycle oscillators described by the
Landau-Stuart equations

Ȧ1std = s1 + iv1dA1std − uA1stdu2A1std − «A2st − Td + j1std,

s18d
Ȧ2std = s1 + iv2dA2std − uA2stdu2A2std + j2std,

whereA1,2 represent the complex amplitude variables,v1,2
=1±Dv are the natural frequencies of the oscillators,« is the
strength of coupling, andj1,2std denote the Gaussian
d-correlated noises of intensities 2D1,2. Numerical integra-
tion of Eqs.(18) has been performed using a fixed-step-size
sh=2p /100d stochastic Euler scheme. The parameters of the
system areDv=0.1, «=0.1, T=250h<15.7, Î2D1=0.05,
and Î2D2=0.3. The results are presented in Fig. 1. They
demonstrate that a delay in(weak) coupling can be revealed
both by the MFE and SIE algorithms. However, the latter
approach provides abiased estimate. Here in the left panel
we show theEstd curve computed from the Hilbert phases
fH=argfResAd+ iHsResAddg, whereHs·d denotes the Hilbert
transform, as well as theEstd curve computed from the
“true” phasesfH=argsAd. We also show here the theoretical
curve according to the Eq.(17); it demonstrates a very good
correspondence with the numerical results for the “true”
phases. In order to obtain the theoretical curve, we write the
phase equation for the system(18) and in this way find the
effective parameters—namely, the noise intensity and cou-
pling strength—for the Eq.(17); here we useDt=h. Note
also that for the phases obtained via the Hilbert transform,
the effective noise appears to be larger. This occurs due to
the property of the transform that “transfers” some compo-

nents of the amplitude noise to the phases; as a result, the
Hilbert phases are in this example more noisy than the “true”
phases. The right panel of Fig. 1 shows the synchronization
index and the cross-correlation function of ResA1d and
ResA2d, which are in correspondence with our theoretical
considerations. Concerning the impact of the time interval
Dt,3 we mention that the curvesEstd, computed for different
Dt, comply with Eq.(17) and its discussion. In the presenta-
tion of the error in the normalized form,ENstd, the increase
of Dt results in a more pronounced minimum.

As a next example we consider unidirectionally coupled
chaotic Rössler oscillators. It is known that the phase dynam-
ics of this system is qualitatively similar to that of noisy limit
cycle oscillators: the phase exhibits a random-walk-like mo-
tion, though the diffusion coefficient is relatively small
[24,29]. Therefore, we expect that our approach can be ap-
plied to the systems of this class as well. The model we
simulate reads

ẋ1 = − v1y1 − z1 + «x2st − Td, ẋ2 = − v2y2 − z2,

ẏ1 = v1x1 + 0.15y1, ẏ2 = v2x2 + 0.15y2,

ż1 = 0.2 +z1sx1 − 10d, ż2 = 0.2 +z2sx2 − 10d, s19d

wherev1,2=0.99±0.08 are the natural frequencies of the os-
cillators, « is the coupling strength, andT denotes the delay
in coupling. Numerical solutions of Eqs.(19) have been ob-
tained by means of a predictor-corrector integration scheme
with a fixed steph=2p /100. The results for«=0.05 andT
=3200h<202 are presented in Fig. 2 forDt=20h. Here we
also show the envelope of the cross-correlation function be-
tweenx1 and x2; note that in this case it is not close to the
rstd curve due to uncorrelated fluctuations of chaotic ampli-
tudes. Results of further simulations(not shown here) dem-
onstrate that(i) the delay can be correctly estimated also in
case of a relatively strong coupling«=0.4, when the phase
dynamics approximation is quite poor, and(ii ) good esti-
mates can be obtained even with largeDt of the order of the
oscillation period.

We conclude the discussion of the unidirectional coupling
case by emphasizing that in a practical situation we do not
have to know beforehand which system is the driver. Indeed,
we shall consequently fit two dependences,f1st+Dtd

3In these as well as in the following computations the integration
step is kept small(h=2p /100 in this example) and then the data
points are downsampled to increaseDt.

FIG. 2. Unidirectional delayed coupling of
chaotic Rössler oscillators[Eqs.(19)]. The delay
in coupling is estimated from the position of the
minimum of Estd and maximum ofrstd. The
dashed curve in the right panel shows the enve-
lope of the cross-correlation function betweenx1

andx2.
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−f1std on f1std, f2st−td and f2st+Dtd−f2std on f2std,
f1st−td, and look which one exhibits a minimum.

B. Performance of the delay estimation and the influence of
parameters

1. Observational noise

In this section we explore the effects of intrinsic and/or
measurement noise on the performance of the two time delay
estimators MFE and SIE. For this purpose, we again consider
the system(18); see Fig. 3. First we compare the results for
the case of noise-freesÎ2D1=0d and noisy sÎ2D1=0.05d
driven systems(bold blue and dashed red lines, respec-
tively); the noise in the driver wasÎ2D2=0.3. As expected,
we see that noise in the driven system reduced the perfor-
mance of the delay estimation, making the minimum of the
curve less pronounced. Next, we add observational white
Gaussian noisez1,2 with rms valueÎ2D1,2

obs=0.1 to the signals
RehA1,2j. That means that the phases has been computed by
means of the Hilbert transform fromx1,2

obs=RehA1,2stdj
+z1,2std. The results for the case when both internal and ob-
servational noises are present are shown by the dot-dashed
line (black). Then, as is typically done in the processing of
real-world data, the noisy signals have been smoothed using
a Savitzky-Golay fourth-order polynomial filter and subse-
quently their phases have been extracted by means of the
Hilbert transform; the corresponding results are shown by
the dotted(black) line. The results of this example have been
obtained by settingDt=10h. Note that for better comparison
of different curves we use here the normalized error.

Concluding this example, we note that(i) observational
(and to some extent intrinsic) noise can be easily filtered out
and therefore does not hamper the delay estimation;(ii ) in-
trinsic noise in the driven systems reduces the sensitivity of
both algorithms to the presence of a delay; however, this
does not bias the MFE; and(iii ) we recall that estimation is
possible only due to phase diffusion in the driver.

2. Influence of noise and coupling strength

In order to illustrate further the performance of the meth-
ods and systematically analyze the influence of the noise
intensity, coupling strength, and other parameters, we exploit
a computationally efficient model; namely, we consider two
unidirectionally coupled noisy sine maps:

f1sn + 1d = f1snd + v1 + « sin ff2sn − Td − f1sndg + j1snd,
s20d

f2sn + 1d = f2snd + v2 + j2snd,

where modulo 2p operation is applied at every iteration and
the parametersv1,2, «, andT denote the natural frequencies,
coupling strength, and delay, respectively. In the following
simulations, we setv1,2=0.5117Dv.

Figure 4 shows the effect of coupling strength on the per-

FIG. 3. (Color online) Unidirectional delayed coupling of noisy limit cycle oscillators[Eqs.(18)]. The value of the delay in coupling is
revealed from the dependences of the fitting errorEN and synchronization indexr versus shiftt between the two time series of phases(left
and right panels, respectively). The dotted vertical lines mark the true value of the delayT. Bold (blue) line illustrates the case of the noisy
driver and noise-free driven system; dashed(red) line corresponds to the case when the response system is noisy as well. Dot-dashed line
(black) shows the results for the case when both systems are noisy and the observed signals are contaminated by observational noises.
Finally, the dotted(black) line shows the results for the latter case obtained after smoothing the signals as described in the text; the fact that
the curves obtained after smoothing nearly coincide with the curves for noise-free response system demonstrates that the delay can be
efficiently estimated from real-world data.(In the right panel three of four curves nearly coincide.) Note thatrstd dependence provides a
biased estimate of the delay.

FIG. 4. (Color online) The influence of the driving strength on
the estimation of delay by means of the MFE(left panel) and SIE
(right panel) algorithms for unidirectionally coupled noisy maps
[Eq. (20)]. Gray scales(colors) code the values of the fitting error
Estd and synchronization indexrstd, respectively. Note that the
MFE algorithm provides accurate estimates of the delay as long as
the driving strength« exceeds the noise level in the driven system
[cf. Eq. (16)]. The SIE algorithm produces a biased estimate, in
accordance with Eq.(13).
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formance of the methods MFE and SIE. Here the parameters
areT=50,Dv=0.01,Î2D1=0.1, andÎ2D2=0.3, whereas the
coupling strength« is varied. In a similar way we depict the
effect of the noise intensity in Fig. 5, forT=50, Dv=0.01,
«=0.6, andÎ2D1=0.1, whereas the intensity of the noise in
the driver D2 is varied. In agreement with the theoretical
predictions, both methods allow the identification of delay as
long as the driving is sufficiently strong. The delay is accu-
rately recovered by the MFE algorithm, while biased esti-
mates[cf. Eq. (13)] are obtained by means of the SIE algo-
rithm. Furthermore, the presence of noise in the driver
system is essential for the detection and estimation of delay.
With an increase of the noise intensity, the minimum ofEstd
and maximum ofrstd appear and become more pronounced.

3. Influence of the detuning

In this section we consider the effect of the detuning pa-
rameterDv. Its variations result in a qualitative change of
the dynamics(synchronous versus quasiperiodic) and we
cannot exactly predict the effect of this parameter from our
theoretical considerations. The results are shown in Fig. 6 for
the following parameters:T=50, «=0.6, Î2D1=0.1, and
Î2D2=0.3; they provide two interesting observations. First,
the identification of delay is possible even for zero detuning,
provided that the driver is noisy and the driving strength is
sufficiently large to overcome the intrinsic noise in the re-
sponse system. Within these limits, the MFE algorithm be-
comes less sensitive to the detuning effect, while the SIE
algorithm gradually loses its performance with an increase of
the detuning. Second, far from the synchronization,rstd is
small and a reliable identification of a global maximum be-
comes problematic. On the contrary, the MFE algorithm pro-
vides a clearly defined minimum for the whole range of the
detuning.

A final remark concerns the data requirements of the al-
gorithms. In all the examples given here we use 5000 periods
of data for the continuous-time models and 10 000 iterations
for the discrete maps. Preliminary computations show that
reasonable results can be obtained from short(of the order of
hundreds of periods) data sets as well and that the MFE

algorithm is less demanding than the SIE algorithm.

C. Bidirectional coupling

In this section we consider bidirectionally coupled sys-
tems. As the model example we take noisy van der Pol os-
cillators

ẍ1 − 0.1s1 − x1
2dẋ1 + v1

2x1 + j1 = «1fẋ2st − T12d − ẋ1stdg,

s21d
ẍ2 − 0.1s1 − x2

2dẋ2 + v2
2x2 + j2 = «2fẋ1st − T21d − ẋ2stdg,

The interaction is characterized by two delays that are
generally different. In the simulation we takeT12=2800h
<176 andT21=4300h<270. The other parameter values are
«1=0.4, «2=0.2, Î2D1,2=0.3, and v1,2

2 =1±0.2. Now we
have to compute two fitting errorsE12 andE21, fitting, respec-
tively, the first or second phase increment in the same way as
for the unidirectional coupling. The results are shown in Fig.
7. We see that bothEstd andrstd dependences exhibit mul-

FIG. 5. (Color online) The influence of the noise intensity in the
driver on the estimation of delay by means of the MFE(left panel)
and SIE(right panel) algorithms for unidirectionally coupled noisy
maps[Eq. (20)]. Note that the noise facilitates the identification of
delay.

FIG. 6. (Color online) The influence of detuning on the estima-
tion of delay by means of the MFE(left panel) and SIE(right panel)
algorithms for unidirectionally coupled noisy maps[Eq. (20)]. Note
that with an increase of the detuning, the SIE algorithm fails, while
the MFE algorithm provides the correct estimate in the whole range
of the detuning.

FIG. 7. Bidirectional delayed coupling of Van der Pol oscillators
[Eqs. (19)]. The dotted vertical lines mark the true value of the
delaysT12 andT21.
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tiple extrema. This can be understood in the following way.
The phase of the first signal at a certain time instantf1std is
strongly correlated withf2st−T12d, and therefore the shift
t=T12 provides an extremum in theEstd and rstd depen-
dences. On the other hand,f2st−T12d is strongly correlated
with f1st−T12−T21d, and f1st−T12−T21d is correlated with
f2st−2T12−T21d; see Fig. 8. Hence, the extrema ofE12std,
r12std are found at shiftst=T12+nsT12+T21d, n=0,1,2, . . ..
Similar considerations for the second signal and the negative
shifts explain the appearance of a series of peaks at the delay
estimation in bidirectionally coupled systems. Noteworthy,
the delays can be estimated for zero detuning between the
oscillators as well. Note also that different minimal values of
E12std andE21std reflect the asymmetry in the coupling and
in the noise intensities.

D. Multiple delays

Generally speaking, an interaction between two systems
can function over several pathways, each having its own de-
lay. In this case our basic model(1) should be extended by
several additional terms. The systematic analysis of such a
complicated interaction is beyond the framework of this pa-
per; in the following example we just show that in principle
the model fitting technique can be used in this case as well.
For this purpose we consider unidirectionally coupled sys-
tems with multiple delays:

Ȧ1std = s1 + iv1dA1std − uA1stdu2A1std − o
k=1

3

«kA2st − Tkd + j1std,

s22d
Ȧ2std = s1 + iv2dA2std − uA2stdu2A2std + j2std.

The parameters arev1,2=1±0.1, Î2D1=0.1, Î2D2=0.3, «1
=0.3, «2=0.15, «3=0.1, T1=170h<10.7, T1=380h<23.9,
andT1=600h<37.7. The results, presented in Fig. 9, suggest
that the MFE algorithm is effective in this case as well. In-
deed, theENstd dependence exhibits three minima, and at
least the delay in the dominating, strongest, driving term can
be correctly identified. The second and third minima provide
biased estimates. On the contrary, the SIE approach, as well
as the cross-correlation analysis, cannot distinguish whether
single or multiple delays are present.

V. DISCUSSION

In this paper we have shown that the delay in weak cou-
pling between two oscillators can be estimated from the time
series, provided these series are suitable for the computation
of instantaneous phases. We emphasize that if the signals
under study come from coupled self-sustained oscillators,
then the determination of the delay is not possible from the
measurements of the phase difference. Indeed, the latter is
not determined solely by the delay, but depends also on the
other parameters of interacting systems. Concerning the use
of the standard tool of data analysis—the correlation
function—we underline that an estimate of the delay can be
obtained by analysis of the envelope of the function, but not
from the position of its maxima(the latter are related to the
phase shift between the signals). Last but not least, in the
case of oscillators which are close to synchrony, the envelope
of the cross-correlation function provides a systematically
overestimated value of the delay. It is important that delay
estimation by means of the model fitting can be easily com-
bined with the estimation of the directionality of coupling
[30–34]. We conclude the presentation of the two presented
techniques for delay estimation by a discussion of several
important points.

a. The role of noise and chaos.We emphasize that
estimation of the delay is possible only if the driving system
is noisy and/or chaotic, so that its phase is diffusive,D2.0
(for definiteness, we discuss now the delay in driving from
system 2 to system 1). Indeed, the dependences of both syn-
chronization index and of the error of the fit ont [Eqs.(12)
and(17)] have the form,e−D2ut−Tu. The maximum ofrstd or
minimum of Estd is well defined only ifD2 is sufficiently
large. The physical meaning of this condition is clear: if there
is no diffusion of the phasef2, then the values off2 at
different instants of time are completely correlated, and one
cannot determine at which time instantt8 the phasef2st8d
affects the dynamics off1std. Mathematically, this would
mean that the effect of delay is reduced to changing the
constanta in the first of Eqs.(2), a→a+v2t. Only when
the phasef2 performs a random walk can we determine at
which time instant it influences the phasef1. Certainly, the
same considerations are valid for the determination of the
delay in driving in the reverse direction—i.e., from system 1
to system 2.

b. Complementary applicability of the methods.Com-

FIG. 8. Schematic illustration of the correlation between time
series f1,2. Phasef1st0d is tightly correlated withf2st0−T12d.
Therefore, quantification of the interrelation between the shifted
phases provides an extremum for shiftt=T12. On the other hand,
f1st0d is tightly correlated withf2st0−2T12−T21d, and hence, the
shift t=T12+sT12+T21d also provides an extremum.

FIG. 9. Unidirectional driving with multiple delays[Eqs.(22)].
The dashed line in the right panels shows the envelope of the cross-
correlation function. Note that the MFE approach correctly indi-
cates the number of delayed interactions.
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paring the two presented techniques we note that the method
based on the synchronization index is most efficient if two
systems are close to synchrony, whereas the method based on
the model fitting does not have this limitation. As the advan-
tage of the first method we mention the absence of param-
eters and simplicity of implementation; on the other hand, it
provides a biased estimate. For delays of the order of the
oscillation period this bias may be not negligible. Generally,
we suggest that the two methods should be used in a comple-
mentary way.

c. Limitations.Application of the method to real data
requires an assumption that the underlying systems can be(at
least approximately) modeled by phase equations(1). Al-
though the preliminary computations demonstrate that the
technique can be effective in more complex cases—e.g., with
multiple delays—this limitation should be taken into ac-
count. In particular, the presence of internal delays requires
an additional treatment.
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APPENDIX A: ANALYTIC CALCULATION OF THE
SYNCHRONIZATION INDEX

Here we present a statistical analysis of Eq.(10). Integrat-
ing it, we obtain

C =E
−`

t

fj1sud − j2su − Tdgesu−tdAdu.

Let us find the variance of our observable:

Varsud = Var„C + sT − tdv2 + c0 + h…

= VarsC + hd

= kC2l +KSE
t−t

t−T

j2sudduD2L + 2kCE
t−t

t−T

j2suddul,

sA1d

where we use thatkCl=khl=0 andsT−tdv2+c0=const, as
well as the definition ofh given by Eq.(8). BecauseCstd
depends only on the values ofj2ssd for −`,s, t−T andh
depends only on the values ofj2ssd for s lying in the interval
betweent−t andt−T, we conclude that fort,T these quan-
tities are independent and the last term vanishes. Thus, for
t,T, Eq. (9) holds.

For t.T we compute separately all three terms in Eq.
(A1). For the first we get

kC2l =KE
−`

t

fj1ssd − j2ss− Tdgess−tdAdsE
−`

t

fj1sud − j2su

− Tdgesu−tdAduL
= 2sD1 + D2dE

−`

t

esx−tdAdx

=
2sD1 + D2d

A
. sA2d

The second term gives

KE
t−t

t−T

j2sudduE
t−t

t−T

j2ssddsL = 2D2ut − Tu.

The third term gives

2KCE
t−t

t−T

j2sudduL = 2E
−`

t

dsE
t−t

t−T

3dukfj1ssd − j2ss− Tdgj2sudless−tdA

= − 4D2E
t−t

t−T

esu+T−tdAdu

= −
4D2

A
s1 − esT−tdAd. sA3d

Finally, for all t we obtain

Varsud =5
2sD1 + D2d

A
+ 2D2st − Td −

4D2

A
s1 − e−st−TdAd,

t ù T,

2sD1 + D2d
A

− 2D2st − Td,

t , T.

sA4d

Because the distributions ofC andh are Gaussian, the syn-
chronization index is related to this value asrstd
=expf−Varsud /2g, which gives formula(12).

APPENDIX B: ANALYTIC CALCULATION OF THE
FITTING ERROR

Here we present the derivation of the expressions for the
error of the fit for the model(2). The test function is given by
Eq. (15). As the second phase at timet−t can be represented
as f2st−td=f2st−Td+h+v2sT−td, whereh=et−t

t−T j2dt is a
Gaussian process with the variance 2D2uT−tu, the test func-
tion can be rewritten as

f8std = v8 − «8 sinsc − h + a8d.

The constantsv8, «8, and a8=ã8−v2sT−td should be
found by a least-mean-squares fitting procedure—i.e., by
minimizing
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E2 = kffstd − f8stdg2l

= kfv1 − v8 − « sinsc + ad + «8 sinsc − h + a8d + j1stdg2l.

We can complete analytic computations in two limit cases.
In the first case we assume that the systems are in a qua-

siperiodic state. It means that the phase differencec [see Eq.
(5)] grows with time and the distribution ofc mod2p can
be approximated by a uniform one. Performing squaring on
the RHS we obtain

ffstd − f8stdg2 = v1
2 + v82 + «2sin2sc + ad

+ «82 sin2sc − h + a8d + j1
2 − 2v1v8

− 2v1« sinsc + ad + 2v1«8 sinsc − h + a8d

+ 2v1j1 + 2v8« sinsc + ad

− 2v8«8 sinsc − h + a8d − 2v8j1

− 2««8 sinsc + adsinsc − h + a8d

− 2« sinsc + adj1 + 2«8 sinsc − h + a8dj1.

To compute the least mean approximation errorE, we have
to average this expression. We perform this neglecting the
correlations betweenf1 and f2, which is justified for the
considered far from synchrony case. The averaging includes
the integration

s2pd−2E E
0

2p

ffstd − f8stdg2df2df1

and the averaging over the distribution of the noise. The
terms with j1 and the terms with sine-function vanish,
whereas the terms sin2s·d give 1/2. As a result we obtain

E2 = v1
2 + v82 + «2/2 + «82/2 + kj1

2l − 2v1v8

− 2««8ksinsc + adsinsc − h + a8dl.

The last term gives

««8kcoss2c − h + a + a8d − cossa + h − a8dl

= − ««8kcossa + h − a8dl

= − ««8fkcoshlcossa − a8d − ksinhlsinsa − a8dg.

With kcoshl=exps−D2uT−t u d and ksinhl=0 we finally ob-
tain

E2 = v1
2 + v82 + «2/2 + «82/2 + kj1

2l − 2v1v8

− ««8exps− D2uT − tudcossa − a8d.

The optimal value of the parametersv8, a8, and«8 can be
obtained from the following conditions:

] E

] v8
= 0,

] E

] a8
= 0,

] E

] «8
= 0,

which yields v8=v1, a=a8, and «8=« exps−D2uT−tud.
Thus, the error at the best fit is

E2std =
«2

2
+

«2

2
e−2D2uT−tu − «2e−2D2uT−tu + kj1

2l

=
«2

2
s1 − e−2D2uT−tud + kj1

2l. sB1d

Now we consider another limit case where we assume that
the systems are close to synchrony and the fluctuations
around the constant value of the phase differenceC=c
−arcsinsn /«d+a are small[cf. Eq. (10) and its discussion].
We rewrite the RHS of Eq.(2) in the following form[cf. Eq.
(14)] :

f„f1std,f2st − Td… = v1 − « sinsc + ad + j1std

= v1 − « sin fC + arcsinsn/«dg + j1std.

Using the smallness ofC and the notation introduced by Eq.
(11) we obtain

fstd = v1 − n − «Î1 − n2/«2C + j1std = b − AC + j1std,

whereb=v1−n. Our test function is

f8std = b8 − A8sC + hd.

The least-mean-squares error of the fit is then

E2 = kffstd − f8stdg2l = ksb − AC + j1 − b8 + A8C + A8hd2l.

Squaring the RHS and usingkCl=khl=kj1l=0 we obtain

E2 = sb − b8d2 + sA − A8d2kC2l + sA8d2kh2l

− 2A8sA − A8dkChl + kj1
2l.

The conditions

] E

] b8
= 0,

] E

] A8
= 0,

provide the optimal valuesb8=b and A8=A skC2l
+kChld / ksC+hd2l. With these values we obtain, for the er-
ror,

E2std = A2SkC2l −
skC2l + kChld2

ksC + hd2l D + kj1
2l, sB2d

where the termskC2l, kChl, and ksC+hd2l are given by
Eqs. (A2) and (A3), and (A4), respectively. This result is
illustrated in Fig. 10 for the parametersD1=0.1, D2=0.1, T
=50, «=0.05, andn=0.01.

APPENDIX C: FOURIER-BASED MODEL SELECTION

Here we discuss the choice of the test function for the
model fitting estimate of delay. The first question which
arises in the implementation of the MFE algorithm is related
to the determination of the particular terms in the double
Fourier series that approximatesDf1 or Df2. The choice of
the harmonics depends on the balance between reducing
computational cost and ensuring numerical stability and
quality of the fit from the limited amount of data. Practically,
the identification of dominant terms of the coupling function
can be done by means of the two-dimensional discrete Fou-
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rier transform of Dfsf1,f2d over the f0,2pd3 f0,2pd
plane:

Fsk1,k2d =
1

NM
o
0

N−1

o
0

M−1

Dfsf1,f2deisk1f1+k2f2d, sC1d

wherek1,2 denote the spatial frequencies along thef1 andf2
coordinates, respectively.(Here the phases are taken modulo
2p.) The pointsDfsf1,f2d are not regularly distributed in
the phase plane. Therefore, in order to make use of the fast
algorithm for the two-dimensional Fourier transform, we per-
form the Delaunay-triangulation-based cubic interpolation on
a uniform grid on the squaref0,2pd3 f0,2pd with the grid
step 2p /100. The Nyquist theorem provides the upper limit
of the frequencies resolved by these data,k1

max=k2
max=50,

which, under assumption that the coupling functions in Eqs.
(1) are smooth, can be considered as sufficiently large to
prevent aliasing.

The next step is the choice of the significant Fourier co-
efficients. For this purpose we perform a surrogate data test.

Namely, we compute the Fourier coefficientsF̃sk1,k2d for
100 realizations of the randomly shuffledDf and take

kmax(F̃2sk1,k2d)l as the threshold value, wherekl means av-
eraging over the realizations of surrogates. It means that for
the model fitting we use only the termssk1,k2d which satisfy

F2sk1,k2dùmax(F̃2sk1,k2d). An example of this analysis is
given in Fig. 11. In particular, we can see that the modeling
of the chaotic system requires essentially more terms than
the modeling of the simple limit cycle oscillator.

Note that the presented approach is feasible only when
noise in the otherwise synchronous oscillators or quasiperi-
odic dynamics ensure a quite uniform scattering of phase
points over the f0,2pd3 f0,2pd square. The described
Fourier-based model selection could be also exploited for an
estimation of the directionality of coupling[30–34] that re-
quires model fitting by Fourier series as well. For a general
discussion of nonparametric model reconstruction see, e.g.,
[35–38].
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