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Estimation of delay in coupling from time series
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We demonstrate that a time delay in weak coupling between two self-sustained oscillators can be estimated
from the observed time series data. We present two methods which are based on the analysis of interrelations
between the phases of the signals. We show analytically and numerically that irregularity of the phase dynam-
ics (due to the intrinsic noise or chgois essential for determination of the delay. We compare and contrast
both methods to the standard cross-correlation analysis.
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I. INTRODUCTION cussion of phase estimation techniques [&3524.

The paper is organized as follows. In Sec. Il we present

Many natural phenomena can be described by coupleghe methods for delay estimation and in Sec. Ill we analyze
oscillator models. Quite often there exists a certaime de-  {hem analytically. In Sec. IV we consider numerical ex-
lay in coupling which can, e.g., significantly influence the 5pples illustrating that the delay in coupling between noisy
dynamical behavior and synchronization properti#¢s€l.  and/or chaotic oscillators can be estimated from the series of

Indeed, in many cases the propagation time of a signghstantaneous phases. In Sec. V we discuss our results.
through a pathway connecting the interacting subsystems is

not small compared to the characteristic oscillation period, Il. PHASE MODEL AND METHODS FOR DELAY
and, hence, the delay in coupling must be taken into account. ESTIMATION
Examples include laser systeli§, a living coupled oscilla-

tor system with the plasmodium &hysarum polycephalum As.is \(/jvell k_||1|own, the d;sr_:ription %f weakly_ cou_pled sdelf— d
; ; - sustained oscillators can be in a good approximation reduce
E%),_ciaérdmrespwatory systeif®], and neuronal populations to the phase dynamid®4,25. Hence, in the following the-

ﬂretical analysis we consider coupled phase oscillators de-
scribed by the following general equations:

b1= w1+ eF (i), bt — T10) + &4(0), (1)

In this paper we address the problem whether the delay i
weak couplingof noisy limit cycle or chaotic oscillators can
be estimated from the time series of the processes. Note that
the problem is nontrivial, because the dynamical behavior
(e.g., a synchronization pattgrim the presence of delay in )
coupling may be quite similar to that of instantaneously ¢ = o+ eFo(ha(t = Ta1), $alt)) + &(1),

poup!gd systems. We demon;trate that, .countgrintuiti\_/eIXNhere ¢1, and wy , are phases and natural frequencies of
identification of the time delay is possible if the interacting o oscillators fespectively and,, are noisy terms

oscillators are sufficientlyioisy. Noise plays a constructive whereasT;, and T,; are time delays in coupling. Model)

role because it breaks the coherence between the current aj gscribes coupled noisy limit cycle oscillators as well as
delayed states, and therefore allows us to distinguish them"gome chaotic systen(@4] ; in the latter case the irregular

S|m_|la_r rolef can r:)edpl?yed b_y Ch.aOS; ?[GQ_ZJJ lfo(; T de_- termsé, , reflect the chaotic amplitude dynamics. For clarity
scription of methods for estimation of internal delay In a ¢ ,resentation and simplicity of the analytical treatment we

nonlinear system exh|b|t|ng chaoyc dynamics 4ad] for first concentrate on the case of two unidirectionally coupled
the treatment of a linear stochastic system. We also discu stems with the simplest coupling function:

the distinction between the delay and the phase difference o
two signals and emphasize that in the case we analyze here 1= tesin[gt—-T) - () —a]+ &), (2
the delay cannot be accurately estimated by means of cross-
correlation or cross-spectral analysis. .

The input to the algorithms proposed in this paper are the $2= W+ &(1),
series of instantaneous phases. As is usually done in synchrghere o is a constant phase shift. Here we assume that the
nization analysis of multivariate dafa3,24, we assume that nojisy forces perturbing two oscillators are Gaussian, inde-
we can measure the signals on the outputs of interactingendent and 6 correlated (& (t)& (t+7))=2D; ,8(7),
oscillators and that these signals are appropriate for determ@l(t) &(t+7)=0. Later, in Sec. v we’explain quaiitatively
nation of the instantaneous phases; for a description and diﬁ'nd confirm numerically the validity of our approach for

bidirectional coupling and more general coupling functions

F.,F, as well.
*Present address: Center for Research and Applications of Non- We discuss first possible types of dynamical behavior in
linear SystemgCRANS), University of Patras, Greece. system(2). The most important effect here is synchroniza-
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tion: for sufficiently large coupling strengtf and for van-  tors most of the time exhibits small fluctuations around a
ishing noise there is a stable solution with a constant phasstable value[cf. Eq. (3)], possibly intermingled with rare
shift between the oscillators. It is easy to show that dor phase slips—i.e., relatively rapid jumps when the phase dif-
=|w,— w,| there exist a synchronous solution with a constanference gains +&. Consequently, there is a high correlation
phase difference between the values ap,(t) and ¢,(t—T), as the retarded
value of ¢, directly governs the phasg,. On the other hand,
Yo = Po(t) = py(t) = arcsir< P2_ wl) +w,T+a. (3) the correlation betweerb(t) and ¢,(t—7) for 7#T is ex-

€ pected to be smaller. To quantify this, one can characterize
the relation between twshifted-in-timetime series of phases
by ashift-dependent synchronization indg6]

For e <|w;—w,|, Egs.(2) exhibit quasiperiodicity, when the
phase difference grows with time. If noise is present, the1.2
perfect synchrony is destroyed: the phase difference exhibits ,, | _ B e : B 2
small fluctuations aroundy, with possible relatively rapid * (1) =(cog $1(t) = dolt= D"+ (sin [ha(D) = p(t = D))",
27 jumps(phase slips In a quasiperiodic state, fluctuations (4)
are superimposed on the deterministic growth of the phase

difference due to the detuning between the oscillatsee, ~WNere() denote averaging over time. For the shift0 the
e.g.,[24] for details. index reduces to the index used in synchronization analysis

It is important that if the noise in the drivep is absent, for character_ization of the strength of phase interrelation be-
then the delay timé cannot be inferred. Indeed, let us as- tWeen two signalg23,27. One can expect thai(r) has a
sume that the form of the coupling function in Eqg) is ~maximum atr=T. However, this is not exactly true: as we
known exactly, but its parametessand a are unknown. We ~Show theoretically in Sec. Ill A and confirm numerically in
see that the delay and phase shifippear in the argument of Sec. IV below, the position of the maximum of the depen-
the sine function as a combinatian,T+a. Hence, in the ~dence of the synchronization indgx on the time shiftr
purely deterministic case there is no way to distinguish besystematlcally overestimates the delay. Moreover, in the case
tween two different delayd’ and T”, becauser can be ar- Wh(_an the osqlllators are far fro_m synchrony, the synchroni-
bitrary and therefore the condition,T'+a’ =w,T"+a” can  Zation |ndex_|s small for all shifts and therefore does not _
be always fulfilled. Moreover, we emphasize that the delay ir¥ield the estimate of the delay. Thus, the advantages of this
coupling cannot be inferred from the observation of the@Pproach—namely, its simplicity and absence of
phase shifty,, between synchronized oscillators. Indeed, inParameters—are accompanied by several drawbacks which
the synchronous regime both phases grow in time with &an be overcome by the technique presented below in Sec.
common ratdw,t in the example of systei2)] and differ by !l C.

a constanty, that is determined by the detuning,—w,
parameters of coupling and «, and delayT (the latter two B. Cross-correlation function

appear again as the combinatiegT + «), and the contribu- :
tion of these factors cannot be separated. Hence, measure; | MOSt common tool that can be tested for the detection

ments of the phase difference cannot provide the estimate &I :ir; %?Ia)r/];ssér;e t(;(rgérsrhc;irgeelgté?gs?.ggtfga%xefﬁrt:;ﬁglnme
the delay, as sometimes is assumed in physiological an P ’

medical literaturé- indeed. the presence of the delay gener- etween the two oscillations is calculated for the observables
ally implies presence of gconstant in averagghase differ- CoS ¢y and cos¢, as

ence, but not vice versa.
’ . . =2(c t t-
Below we demonstrate that noise plays a constructive role Cl7) = Acos[gy(D)] cos[(t =],

in the context of determination of a delayed interaction. Soynere the fluctuations of the amplitudes are neglected. As-
in system(2), the noiset, breaks the coherence of the phasesming that the systems are close to synchrony, we can ex-
¢, and therefore the time delay is not equivalent to the phaSBress the phases as, ,=w(t—to)+ ¢, , Where w is some
shift. In the rest of this paper we develop and discuss th?requency of ordem%(’wﬁwz)lz [it is w=w, for unidirec-
methods for determination of the delay time in the coupling;j;na coupling described by Eqs$2)] and ¢, , are slow
from the observation of the phase(t) and #,(t) under  pages In the computation, we have to average over the
assumption that their evolution can be approximated by Eqsnsemble of realizations with random initial timgshence,

(D). the terms containing simt, and coswt, vanish. With the
introduced notations we obtain

A. Delay estimation based on a synchronization index C(7) = 2(cos[w(t - ty) + ¢;(1)] cos[w(t - ty) — T

In this method it is assumed that the oscillators are nearly + oot = D)
synchronized; i.e., the phase difference between the oscilla- 2
=(cos[ei(t) ~ ot = 7) + w7])

Yn a number of papers the phase of the cross spectrum at a domi- = coswT(cos[¢y(t) — ¢o(t— 7))
nating frequency is recomputed into a delay. Our consideration —sin sin ) = oot —
shows that this procedure, appropriate for input-output systems, or{sinLex(t) = ¢o(t= 7D
fails in case of coupled self-sustained oscillators. =A(7)codwT+ a),

046213-2



ESTIMATION OF DELAY IN COUPLING FROM TIME SERIES PHYSICAL REVIEW EO, 046213(2004)

where the envelope of the cross-correlation function is de- Consider now the synchronization indgé) for 7# T. In

fined via order to compute it, we have to find the probability distribu-
: tion of
A%(7) = (cos[@s(t) = pt = D])? + (sin [@y(t) = @y(t = 7)])?
and cosa={cos[¢;(t)—¢,(t—7])/A. Noting that ¢(t) 0= (1) = ot = 1) =g+ (T= Dy + 7, ()

= o(t—7) =1 (t) — pp(t—7)+const and comparing with Eq. \yhere

(4) we obtain o

A7) = p(7). 7= &(s)ds 8
t_
Note, however, that if the fluctuations of the amplitudes of ’
the observableg,(t) andx,(t) are not small, then the enve- is a Gaussian random number with zero mean and variance
lope of the cross-correlation function of these processes ca?D,|T—1. If  and 7 were independerithis can be taken as
essentially deviate from the synchronization indefk Fig. 2  a zero approximatiop then the distribution o# would be
below). the convolution of the distributions faf and 7. In the Fou-
rier domain we can multiply the Fourier transforms, which
C. Delay estimation based on model fitting gives, for the first harmonics of the distribution,
This approach to delay estimation is based on the recon- P1(6) = Py()exp(— Dy T - 7))
struction of the first equation in Eq&) from the seriesp, ,.
Namely, we suggest to fit the numerically estimated phas&'

derivative d¢p;/dt—that is, the instantaneous frequency of _ _ _
the first oscillator—by a function of,(t) and ¢,(t—7), for p(7) = p(T)expl(= DT - 7). ©)
different values of the shift.? Practically, we try to fit the It can be seen that the synchronization index has a maxi-

finite-difference estimation of the derivativge,(t+At) mum at =T, however, in the absence of the noise in the
- ¢, (1)](At)" with a probe function in the form of the double driver (D,=0) the synchronization index becomes indepen-
Fourier series inp, », because in general case the couplingdent of 7.

function is 2r periodic in ¢, ,. The quality of the fit is char- To account for correlations we assume that the coupling is
acterized by the least-mean-squares efofhe idea of the sufficiently strong, so that the fluctuations around the syn-
approach is that the dependerie) should take a minimum chronous state are small. In this case we can linearize the
at 7=T. This is confirmed by the theoretical analysis of this Adler equation(6) around the constant synchronous value
method, performed in Sec. Il B, whereas the technical de#p=arcsinv/e)—a and write an equation for the small de-
tails and numerical illustration of the approach can be foundviation of the phase differencl = y— i

in Sec. IV.

W=-AP+4(1) - &(t-T), (10
Ill. THEORETICAL ANALYSIS OF THE METHODS where
In this section we present an analytical derivation of the A=s codip+ a) = JeZ - 12 (11)
= 0 -\ .

above defined quantities(7) and E(7) for the basic model
(2) and discuss under which conditions they allow us to de<Statistical analysis of this model, details of which are pre-

termine the delay in the coupling. sented in Appendix A, leads to the following expression:
— o~ (D1+D2)/AS—D,|T-4
A. Synchronization index plr) =P rmele™
Writing the second equation Eq®) for the delayed time exp(ﬁ(l _e—(r—T>A)>’ =T,
as ¢o(t—-T)=w,+&(t—-T), we obtain for the phase difference A (12
1, T<T.
= (1) = dp(t=T) (5)

This function has only one maximum, which occurs in do-
main of the argument,,,,>T. Thus, synchronization index
attains its maximum value for=7.,,, found from the condi-
tion

the stochastic Adler equation

Y=v—esin(+a) + &) - HE-T), (6)

wherev=w; - w, is the detuning. The probability distribution DA
P(y) for the solution of this equation can be found in =D, +2D,e (mac A= 0,
[24,28, with the amplitude of the first harmonics giving the

synchronization inde®, ()= p(T). Provided the phase of the driver diffus&s,> 0, this gives,

with account of Eq(11),

2 i i ituati In2
.W(.-',‘ noFe that in a_practlca_l situation we do not have to krsow Ta=THIN2A=T + _ (13)
priori which system is the driver; see Sec. IV. \;82_ 2
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FIG. 1. Estimation of the delay in coupling of noisy limit cycle oscillatfEs|s.(18)]. The dotted vertical lines mark the true value of
the delayT. Left panel: error of the fi€ as the function of shift, computed from the phases obtained via the Hilbert transfsotid line)
and from the phases obtained directly from Ed®) (dotted ling, as well as the theoretical curve according to &) (bold line). Right
panel: dependence of the synchronization ingean the shift7 (bold line) and the cross-correlation functiasolid line); p(7) nearly
coincides with the envelope @(7). Note thatp(7) dependence provides a biased estimate of the delay.

Thus, the described method produces a biased estimate of theise this quantity diverges. However, this is not important
delay, where the bias decreases with the increase of the dribecause practically we fit not the derivative of the phase but
ing strength; cf. the numerical results shown in Figs. 3 and 4its finite-difference approximatiofi¢h,(t+At)— ¢, (t)J(At)™L.
For the Langevin equation with-correlated noise such an
B. Error of model fittin estimation contains a regular term thatAisindependent and

' g a noisy term~(At)~Y2. Therefore, the Eq16) becomes

In this method we try to approximate the right-hand side

(RHS) of the first equation in Eqg2), i.e., E2(7) = %2(1 e T 4 ZA_Dtl (17
f(1(1), po(t = T)) = w1 + & Sin[Pp(t = T) = (1) — a] + &(1) _ o _
= wy— & sin(p+ a) + &(1) (14) [The same consideration is valid for E@2).] Thus, the

error of the fit as a function of the shiE(7) contains two
by a function ofe,(t) and ¢,(t—7), wherer can be positive components: the first, the regular one, is independenitof

or negative. Let our test function be and is determined by the proper choice of the shifdn the
) . -, contrary, the contribution of the noisy term4sndependent
f'() =0’ +&’ sin[gy(t—7) = pi(t) - '] and decreases witht. Hence, the variation oE within a

given range of shift; i.e., 2~ EZ;,, is approximately con-
stant, whiIeEﬁ1in is inversely proportional tat. Correspond-
ff) = —&' sin(yg+n+a'). (15 ingly, the relative variation of the error for the given range of
N L, 7will be larger for largerAt. In order to preserve accuracy of
Determmgu_on of the parametets 1 & by least-mean- _the estimation of the delay time the intervat should be,
squares fitting leads to an expression for the error of the f'thowever kept small compared to the delay

This expression can be obtained analytically for two limit ' '

cases{i) the oscillators are far from synchrony afio) the
oscillators are very close to synchrony; the calculations for IV. NUMERICAL RESULTS
both cases are given in Appendix B. In the first case we end \ve start with a discussion of general aspects of numerical
with the following expression for the error of the f#ee EQ.  jmplementation of the described methods. The calculation of
(BDI: the cross-correlation function is standard. For the synchroni-
&2 zation index estimatiofSIE) and model fitting estimation
E(1) = —(1-e 22T + (&), (16)  (MFE) methods one has first to compute the phases from
2 scalar signals; in all examples below this has been done with
This error as a function of has a minimum at=T. Thus the help of the analytic signal method based on the Hilbert
we obtain an estimate of the deldyas an output of the transform (see [23,24). The calculation ofp(7) is then
fitting procedure. The stronger the coupling and the phasétraightforward, whereas the computationkgf) requires a
diffusion in the driver, the more pronounced is the minimum.discussion.
Its position provides the unbiased estimate of the delay, con- The first important point is the substitution of the deriva-
trary to the estimate provided by the position of the maxi-tive ¢, by the finite difference[¢,(t+At)— g (t)](AD)™%
mum of the synchronization index. In the close to synchronyNamely, we compute the error of the §it EAt for the phase
case the error of the fit as a function of shiftr) also has a incrementA ¢y (t)= ¢1(t+At) - ¢ (t). In this way we avoid
sharp minimum forT=7; the lengthy expression fd&(7) is  the poor operation of numerical derivation of a noisy time
given by Eq.(B2) in Appendix B and illustrated in Fig. 10. series. Moreover, as discussed above, by increasinge
Note that in Egs(16) and (B2) the noise intensity(¢2)  effectively filter out the internal noise of a driven oscillator.
appears as an additive constant. Formally, dezorrelated Note that for practical purposes, when there is no need for

Using Eq.(7) and denotingy’ =o' + (T - 7)w, we rewrite it as
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FIG. 2. Unidirectional delayed coupling of
chaotic Rossler oscillatoffEgs.(19)]. The delay
in coupling is estimated from the position of the
minimum of £&(7) and maximum ofp(7). The
dashed curve in the right panel shows the enve-
lope of the cross-correlation function betwegn
and x,.
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comparison of theoretical results with numerics, it is convenents of the amplitude noise to the phases; as a result, the
nient to use thenormalized errorfy. The latter is computed Hilbert phases are in this example more noisy than the “true”
for the phase increments normalized by their rms vadiye; phases. The right panel of Fig. 1 shows the synchronization
varies from zero to 1. index and the cross-correlation function of (R@ and
Another important issue is the choice of the fitting func- Reg(A,), which are in correspondence with our theoretical
tion. The natural choice here is a Fourier series. As soon asonsiderations. Concerning the impact of the time interval
the number of terms of this series has been chosen, the errat,® we mention that the curve&7), computed for different
of fit E(7) is obtained via a standard linear regression proceat, comply with Eq.(17) and its discussion. In the presenta-
dure. With a little effort the significant Fourier terms can betion of the error in the normalized forngy(7), the increase
determined by trial and error—namely, by checking that noof At results in a more pronounced minimum.
systematic periodic distribution is displayed by the residuals. As a next example we consider unidirectionally coupled
Alternatively, the dominant terms can be revealed by meanghaotic Rossler oscillators. It is known that the phase dynam-
of the procedure described in Appendix C. ics of this system is qualitatively similar to that of noisy limit
cycle oscillators: the phase exhibits a random-walk-like mo-
tion, though the diffusion coefficient is relatively small
[24,29. Therefore, we expect that our approach can be ap-
We start our numerical simulations with a considerationplied to the systems of this class as well. The model we
of two coupled noisy limit cycle oscillators described by the simulate reads
Landau-Stuart equations

A. Unidirectional coupling

) X1=— Y1 =+ eXo(t=T), Xp=—wr— 2,
Aq(t) = (1 +iw)Ay(t) = [ALD[PAL(1) — eAg(t = T) + &(1), _ '
. (18) V1= wX +0.15/;, Y= wX +0.15),,
Ag(t) = (1 +iwg)Ax(t) = [Ag(t)PAx(t) + &x(1),

where A, , represent the complex amplitude variableg,,

=1+Aw are the natural frequencies of the oscillaterss the ~ wherew,; ,=0.99+0.08 are the natural frequencies of the os-
strength of coupling, andé, ,(t) denote the Gaussian cillators, ¢ is the coupling strength, antldenotes the delay
s-correlated noises of intensitie2,. Numerical integra- in coupling. Numerical solutions of Eqgl9) have been ob-
tion of Egs.(18) has been performed using a fixed-step-sizelained by means of a predictor-corrector integration scheme

(h=27/100) stochastic Euler scheme. The parameters of thavith a fixed steph=27/100. The results foe=0.05 andT
system areAw=0.1, £=0.1, T=25th~15.7, \5’2_Dl:0.05, =320~ 202 are presented in Fig. 2 fat=20h. Here we

and y2D,=0.3. The results are presented in Fig. 1. They@lS0 show the envelope of the cross-correlation function be-

demonstrate that a delay iweak coupling can be revealed tWeenx, andx,; note that in this case it is not close to the
both by the MFE and SIE algorithms. However, the latterP(7) curve due to uncorrelated fluctuations of chaotic ampli-
approach provides hiased estimateHere in the left panel tudes. Resul'gs of further simulatioKsot showq heredem- .
we show theE(7) curve computed from the Hilbert phases onstrate thati) the delay can be correctly estimated also in
bu=ardRe(A) +iH(Re(A))], whereH(-) denotes the Hilbert ¢ase of a relatively strong coupling=0.4, when the phase
transform, as well as th&(7) curve computed from the dynamics approximation is quite poor, aiid) good esti-
“true” phasespy=argA). We also show here the theoretical mat_ﬁst_can be .ok(;tamed even with ladgeof the order of the
curve according to the E@17); it demonstrates a very good osciation period. . e .
correspondence with the numerical results for the “true” We conclude t_h(_e dlscuss_lon of the.un|d|.rect|'onal coupling
phases. In order to obtain the theoretical curve, we write th§2S€ DY émphasizing that in a practical situation we do not

phase equation for the systert8) and in this way find the ave to know beforehand vyhich system is the driver. Indeed,
effective parameters—namely, the noise intensity and couVe Shall consequently fit two dependenceg(t+At)
pling strength—for the Eq(17); here we useAt=h. Note

also that for the phases obtained via the Hilbert transform, 3n these as well as in the following computations the integration
the effective noise appears to be larger. This occurs due tetep is kept smallh=27/100 in this exampleand then the data

the property of the transform that “transfers” some compo-points are downsampled to increase

21: 02 +Zl(Xl_ 10), .22:0.2 +22(X2_ lO), (19)
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FIG. 3. (Color onling Unidirectional delayed coupling of noisy limit cycle oscillatgEsqs.(18)]. The value of the delay in coupling is
revealed from the dependences of the fitting efipand synchronization index versus shiftr between the two time series of phagkest
and right panels, respectivglyThe dotted vertical lines mark the true value of the délaold (blue) line illustrates the case of the noisy
driver and noise-free driven system; dasliext) line corresponds to the case when the response system is noisy as well. Dot-dashed line
(black) shows the results for the case when both systems are noisy and the observed signals are contaminated by observational noises.
Finally, the dottedblack) line shows the results for the latter case obtained after smoothing the signals as described in the text; the fact that
the curves obtained after smoothing nearly coincide with the curves for noise-free response system demonstrates that the delay can be
efficiently estimated from real-world datéin the right panel three of four curves nearly coincjdeote thatp(7) dependence provides a
biased estimate of the delay.

—pa(t) on ¢y(1), do(t—7) and ¢(t+At)—hy(t) on (1), 2. Influence of noise and coupling strength
¢,(t-7), and look which one exhibits a minimum. In order to illustrate further the performance of the meth-
ods and systematically analyze the influence of the noise

o . intensity, coupling strength, and other parameters, we exploit
B. Performance of the delay estimation and the influence of a computationally efficient model; namely, we consider two

parameters unidirectionally coupled noisy sine maps:
1. Observational noise .
d1(N+1) = §y(N) + 0 + & SiN[ (N =T) = py(N)] + &(n),
In this section we explore the effects of intrinsic and/or (20
measurement noise on the performance of the two time delay Bo(n+ 1) = o(n) + wy + 5(N),

estimators MFE and SIE. For this purpose, we again consider
the systertil8); see Fig. 3 First we compare the results for™
the case of noise- fre(:~\2Dl 0) and n0|sy(\2D1 0.05
driven systems(bold blue and dashed red lines, respec-
tively); the noise in the driver wag2D,=0.3. As expected,
we see that noise in the driven system reduced the perfor-
mance of the delay estimation, making the minimum of the
curve less pronounced. Next, we add observational whit
Gaussian noisé; , with rms valuey 2D°bs—0 ltothe signals (s
Re[A; ,}. That means that the phases has been computed t
means of the Hilbert transform from<°b3— Re(A (1)} 03
+{; o(t). The results for the case when both internal and ob-"
servational noises are present are shown by the dot-dash
line (black. Then, as is typically done in the processing of
real-world data, the noisy signals have been smoothed usir
a Savitzky-Golay fourth-order polynomial filter and subse- 100
quently their phases have been extracted by means of tt _::I

Hilbert transform; the corresponding results are shown by
0.1

the dottedblack) line. The results of this example have been

obta_med by setting\t=10h. Note that for bet_ter comparison FIG. 4. (Color onling The influence of the driving strength on
of different curves we use here the normalized error. the estimation of delay by means of the MEEft pane) and SIE
Concluding this example, we note th@j observational (ight pane) algorithms for unidirectionally coupled noisy maps
(and to some extent intringinoise can be easily filtered out [gq. (20)). Gray scalegcolory code the values of the fitting error
and therefore does not hamper the delay estimationin-  £(7) and synchronization indeg(7), respectively. Note that the
trinsic noise in the driven systems reduces the sensitivity ofFE algorithm provides accurate estimates of the delay as long as
both algorithms to the presence of a delay; however, thishe driving strengtte exceeds the noise level in the driven system
does not bias the MFE; andi) we recall that estimation is [cf. Eq. (16)]. The SIE algorithm produces a biased estimate, in
possible only due to phase diffusion in the driver. accordance with Eq.13).

where modulo 2r operation is applied at every iteration and
the parameters, ,, &, and T denote the natural frequencies,
coupling strength, and delay, respectively. In the following
simulations, we seb, ,=0.511% Aw.

Figure 4 shows the effect of coupling strength on the per-

0.45

o
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FIG. 5. (Color onling The influence of the noise intensity in the FIG. 6. (Color onling The influence of detuning on the estima-
driver on the estimation of delay by means of the M{it pane) tion of delay by means of the MFeft pane) and SIE(right pane)
and SIE(right pane) algorithms for unidirectionally coupled noisy algorithms for unidirectionally coupled noisy maji=q. (20)]. Note
maps[Eq. (20)]. Note that the noise facilitates the identification of that with an increase of the detuning, the SIE algorithm fails, while
delay. the MFE algorithm provides the correct estimate in the whole range
of the detuning.

formance of the methods MFE and SIE. Here the parameters

areT=50,Aw=0.01,y2D;=0.1, andy2D,=0.3, whereas the algorithm is less demanding than the SIE algorithm.
coupling strengtlz is varied. In a similar way we depict the

effect of the noise intensity in Fig. 5, far=50, Aw=0.01, C. Bidirectional coupling

2=0.6, andy2D,=0.1, whereas the intensity of the noise in In this section we consider bidirectionally coupled sys-

the driver D, is varied. In agreement with the theoretical tems. As the model examole we take noisv van der Pol os-
predictions, both methods allow the identification of delay as : P y

long as the driving is sufficiently strong. The delay is accu-Clllators
rately recovered by the MFE algorithm, while biased esti- % —0.1(1 - x2)X, + w2, + & = 4[¥o(t = T1o) = X4(1)],
mates[cf. Eq. (13)] are obtained by means of the SIE algo- ' VLT TR s TR ' ' 21)
rithm. Furthermore, the presence of noise in the driver 2\ 2 : -
. 7 , - -0.1(1- + 0o+ &= -To) -
system is essential for the detection and estimation of delay. 2 0.UL =0+ wo+ &2 = e2lXa(t = Tor) = X)),
With an increase of the noise intensity, the minimunt 67 The interaction is characterized by two delays that are
and maximum op(7) appear and become more pronouncedgenerally different. In the simulation we taki,=2800h
~176 andT,;=430th=270. The other parameter values are
3. Influence of the detuning £,=0.4, £,=0.2, \2D;,=0.3, and wi ,=1+0.2. Now we

In this section we consider the effect of the detuning pa—ha\’e to compute two fitting errots, and&yy, fitting, respec-
the first or second phase increment in the same way as

rameterAw. Its variations result in a qualitative change of iVely: the firstor . ey
the dynamics(synchronous versus quasiperiodiand we for the unidirectional coupling. The results are shown in Fig.
cannot exactly predict the effect of this parameter from our" -
theoretical considerations. The results are shown in Fig. 6 for
the following parametersT=50, £=0.6, y\2D;=0.1, and
\V2D,=0.3; they provide two interesting observations. First,
the identification of delay is possible even for zero detuning,
provided that the driver is noisy and the driving strength isg3 0-207
sufficiently large to overcome the intrinsic noise in the re-
sponse system. Within these limits, the MFE algorithm be-
comes less sensitive to the detuning effect, while the SIE o2
algorithm gradually loses its performance with an increase o  0.158
the detuning. Second, far from the synchronizatipfr) is

small and a reliable identification of a global maximum be-
comes problematic. On the contrary, the MFE algorithm Pro- & o.s3
vides a clearly defined minimum for the whole range of the
detuning.

A final remark concerns the data requirements of the al : : 0 : :
gorithms. In all the examples given here we use 5000 period = -800 -400 g 400 800 -800 400 g 400 800
of data for the continuous-time models and 10 000 iterations
for the discrete maps. Preliminary computations show that FIG. 7. Bidirectional delayed coupling of Van der Pol oscillators
reasonable results can be obtained from stuirthe order of  [Egs. (19)]. The dotted vertical lines mark the true value of the
hundreds of periogsdata sets as well and that the MFE delaysT;, and T,;.

We see that both(7) and p(7) dependences exhibit mul-

0.214 : : 1

0.5

P12
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p21
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FIG. 9. Unidirectional driving with multiple delayfEgs.(22)].
The dashed line in the right panels shows the envelope of the cross-
c]correlation function. Note that the MFE approach correctly indi-
cates the number of delayed interactions.

FIG. 8. Schematic illustration of the correlation between time
series ¢, 5. Phaseg(to) is tightly correlated with ¢,(tg—T1o).
Therefore, quantification of the interrelation between the shifte
phases provides an extremum for shiftT,,. On the other hand,
b1(tg) is tightly correlated withg,(tg—2T1,—T,1), and hence, the
shift 7=T;,+(T1,+T,y) also provides an extremum. V. DISCUSSION

In this paper we have shown that the delay in weak cou-
pling between two oscillators can be estimated from the time
series, provided these series are suitable for the computation
of instantaneous phases. We emphasize that if the signals
under study come from coupled self-sustained oscillators,
then the determination of the delay is not possible from the
: measurements of the phase difference. Indeed, the latter is
bo(t=2T15~To)); see F_'g' 8. Hence, the extrema &f(7), not determined solely gy the delay, but depends also on the
p1(7) are found at shifts=Tio+n(T1p+T51), N=0,1,2,....  Gher parameters of interacting systems. Concerning the use
Similar considerations for the second signal and the negativgs the standard tool of data analysis—the correlation
shifts explain the appearance of a series of peaks at the delgynction—we underline that an estimate of the delay can be
estimation in bidirectionally coupled systems. Noteworthy,gptained by analysis of the envelope of the function, but not
the delays can be estimated for zero detuning between thgsm the position of its maximéthe latter are related to the
oscillators as well. Note also that different minimal values Ofphase shift between the signalkast but not least, in the
€127) and &y(7) reflect the asymmetry in the coupling and case of oscillators which are close to synchrony, the envelope
in the noise intensities. of the cross-correlation function provides a systematically
overestimated value of the delay. It is important that delay
estimation by means of the model fitting can be easily com-

Generally speaking, an interaction between two systembined with the estimation of the directionality of coupling
can function over several pathways, each having its own dg30-34. We conclude the presentation of the two presented
lay. In this case our basic modgl) should be extended by techniques for delay estimation by a discussion of several
several additional terms. The systematic analysis of such @nportant points.
complicated interaction is beyond the framework of this pa- a. The role of noise and chao®Ve emphasize that
per; in the following example we just show that in principle estimation of the delay is possible only if the driving system
the model fitting technique can be used in this case as wells noisy and/or chaotic, so that its phase is diffusig> 0
For this purpose we consider unidirectionally coupled sys{for definiteness, we discuss now the delay in driving from

tiple extrema. This can be understood in the following way.
The phase of the first signal at a certain time insitt) is
strongly correlated withp,(t—T,,), and therefore the shift
=Ty, provides an extremum in thE(7) and p(7) depen-
dences. On the other hand,(t—T,,) is strongly correlated
with ¢,(t=T15—T,y), and ¢,(t—T1,—T,y) is correlated with

D. Multiple delays

tems with multiple delays: system 2 to system)lindeed, the dependences of both syn-
3 chronization index and of the error of the fit arfEQs.(12)

. —Do| T H

Au() = (1 +iw)A(D) ~ [AfOPALD) = D eholt =T + &(t),  ANA(LD] have the form-e 2Tl The maximum of(r) or
k=1 minimum of E(7) is well defined only ifD, is sufficiently

(22) large. gr;fe physic?l rr}near;}ing of tth conhditionlis cleaf;: if there
. _ . 2 is no diffusion of the phaseb,, then the values ofp, at
Aalt) = (L +iwp) Aglt) — [Ax()*Ax(t) + £(1). different instants of time are completely correlated, and one
The parameters are; ,=1+0.1, \ﬁz—Dl:o_]_' \52_132:0_3, € cannot determine at which time instaritthe phasegp,(t’)
=0.3, £,=0.15, £5=0.1, T;=17Ch=10.7, T;=38h=~23.9, affects the dynamics of,(t). Mathematically, this would
andT,=60Ch=37.7. The results, presented in Fig. 9, suggestnean that the effect of delay is reduced to changing the
that the MFE algorithm is effective in this case as well. In-constanta in the first of Eqs.(2), a— a+w,7. Only when
deed, the&y\(7) dependence exhibits three minima, and atthe phasep, performs a random walk can we determine at
least the delay in the dominating, strongest, driving term canvhich time instant it influences the phage. Certainly, the
be correctly identified. The second and third minima providesame considerations are valid for the determination of the
biased estimates. On the contrary, the SIE approach, as welklay in driving in the reverse direction—i.e., from system 1
as the cross-correlation analysis, cannot distinguish whethdo system 2.
single or multiple delays are present. b. Complementary applicability of the methoom-
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paring the two presented techniques we note that the method

based on the synchronization index is most efficient if two (¥?) =

systems are close to synchrony, whereas the method based on
the model fitting does not have this limitation. As the advan-
tage of the first method we mention the absence of param-
eters and simplicity of implementation; on the other hand, it
provides a biased estimate. For delays of the order of the
oscillation period this bias may be not negligible. Generally,
we suggest that the two methods should be used in a comple-
mentary way.

c. Limitations.Application of the method to real data
requires an assumption that the underlying systems céatbe
least approximatelymodeled by phase equatioii$). Al-
though the preliminary computations demonstrate that the
technigue can be effective in more complex cases—e.g., with
multiple delays—this limitation should be taken into ac-
count. In particular, the presence of internal delays requires
an additional treatment.
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APPENDIX A: ANALYTIC CALCULATION OF THE

SYNCHRONIZATION INDEX

Here we present a statistical analysis of Ed). Integrat-
ing it, we obtain

t
V= f [&1(u) — &(u—T)]e“VAdu.

Let us find the variance of our observable:

Var(6) = <

PHYSICAL REVIEW O, 046213(2004
t t
f [£1(S) — &x(s— T)]e(s_t)AdS [&1(u) — &(u

-T)]eYAd u>

t
=2(D;+D,) f e VAdx

_2(D;+Dy)

A (A2)

The second term gives

t=T
fz(U)dUJ §2(S)d5> = 2D2| T T| .
t-7

=T
t-7

The third term gives

=T t t-T
2 \Iff &(udu ) = ZJ dsf
t-7 —% t-7

XAW([&(S) = &x(s=T)]&(u)e's VA

t=T
== 4D2f
t-7

__4D;
A

e(u+T—t)Ad u

(1-eT 74, (A3)

Finally, for all 7 we obtain

.
2(D; +D,)

4D
+2D,(7—T) - 72(1 —e (T,

=T,
2(D,;+D
20, D) " 2 _ap7-T),

T<T.

(A4)

Because the distributions df and » are Gaussian, the syn-

Var(6) = Var(W + (T - Dwy + g+ 7)
=Var(V + 7)

t-T 2 =T
=(V?) + <( ft . fz(U)dU> > + AW ft -~ &(u)du),

(A1)

=€

chronization

index is related to this value ags&(7)
xd—Var(6)/2], which gives formulg12).

APPENDIX B: ANALYTIC CALCULATION OF THE
FITTING ERROR

Here we present the derivation of the expressions for the

where we use that¥)=(#7)=0 and(T-7) w,+ ¢)p=const, as
well as the definition ofyp given by Eq.(8). BecauseW¥(t)
depends only on the values éf(s) for —o<s<t-T and
depends only on the values éf(s) for slying in the interval
betweent—7randt—T, we conclude that for<T these quan-

error of the fit for the modg([2). The test function is given by
Eq. (15). As the second phase at timer can be represented
as ¢y(t—1)=gy(t—T)+ p+wo(T—7), where n=[1_] &,dt is a
Gaussian process with the variand®,2T -7, the test func-
tion can be rewritten as

ff)=w' &' sin(y—n+a').

tities are independent and the last term vanishes. Thus, for

7<T, Eg.(9) holds.

For 7>T we compute separately all three terms in Eqg.found by a least-mean-squares fitting procedure—i.e., by

(Al). For the first we get

The constantsw’, &', and a'=a’'-wy(T-7) should be

minimizing
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E*=({f() - 1'®)
=([wy— o' - g sin(y+a) +&' siny—n+a’) + EOT).

We can complete analytic computations in two limit cases.

In the first case we assume that the systems are in a qua-

siperiodic state. It means that the phase differah¢see Eq.
(5)] grows with time and the distribution af mod 27 can

PHYSICAL REVIEW E70, 046213(2004

82 82
EZ(T) — E + Ee—ZDZ\T—ﬂ _ SZe—ZDZ\T—T{ + <§%>

2
== P 1 (). (BL)
Now we consider another limit case where we assume that

the systems are close to synchrony and the fluctuations

be approximated by a uniform one. Performing squaring oyround the constant value of the phase differedte y

the RHS we obtain

[f() = ' ()= i + 0%+ %I (Y + @)
+e'2sif(Yy—n+a')+ & - 20,0
= 2we SiN(y+ @) + 2wq.e’ sin(y—n+a’)
+2wé1 + 20" e SiN(Y+ a)
-20w'e’ sin(f—np+a')-2w'é
—2eg’ sin(Y+ a)sin(y— n+a’)
= 2e sin(if+ a)é; + 2’ sin(y— n+a’)&.

To compute the least mean approximation eEpmwe have

—arcsinv/e)+a are small[cf. Eq. (10) and its discussign
We rewrite the RHS of Eq2) in the following form[cf. Eq.
(14 :

f(h1(1), po(t = T)) = wy — & sin(¢f + @) + &41(1)
= wy— & sin[W + arcsinv/e)] + &(t).

Using the smallness oF and the notation introduced by Eq.
(11) we obtain

f()=w - v—eV1 - 12?2V + &(t) =b— AV + &(1),
whereb=w;,—v. Our test function is
f't)y=b" —A' (W + 7).

to average this expression. We perform this neglecting the

correlations betweemp,; and ¢,, which is justified for the

The least-mean-squares error of the fit is then

considered far from synchrony case. The averaging includesg2 - [FO - (O =((b- AW + & — b’ + AW + A’ 7)?).

the integration

2w
(277)'2] fo [f(t) - f' ()]°d b by

Squaring the RHS and usidy’)=(#)=(&;)=0 we obtain
E?=(b-b")%+ (A= A)XV¥?) + (A) X7
— 2N (A= A (W) +(&D).

and the averaging over the distribution of the noise. Thel’he conditions

terms with ¢ and the terms with sine-function vanish,
whereas the terms $in) give 1/2. As a result we obtain

E?= wi+ 0?2+ &%2+¢'%2 +<§i> - 2w’
= 2ee'(sin(y+ a)sin(y— n+ a’)).
The last term gives

eeg'(cod2y—-n+a+a’)-coda+n-a'))

=-gg'(coda+ n—-a'))
=-¢ge'[{cospcoda— a’) — (sinp)sin(a - a')].
With (cosp)=exp-D,|T-7|) and(sinp)=0 we finally ob-
tain
E2= i+ w2 +&%2+£'%2 +(&) - 2w 0’
—ge’'exp(— Dy|T - 7)coga—a’).

The optimal value of the parameteis, o', ande’ can be
obtained from the following conditions:

3

dw'

JE _

da’

I _

=0, =
de'

0, 0,

which yields o'=w;, a=a’, and &'=¢ exp(-D,|T-1]).
Thus, the error at the best fit is

IE o E o
ab’ T gA
provide the optimal valuesb’=b and A’=A ((V?)

+(U ) [{(¥+7)?). With these values we obtain, for the er-
ror,

(W2) + (¥ p)?
(¥ +7)?
where the termgW¥?), (W), and (¥ +7)?) are given by
Egs. (A2) and (A3), and (A4), respectively. This result is

illustrated in Fig. 10 for the parametely =0.1,D,=0.1, T
=50, £=0.05, andv=0.01.

E%(7) :A2(<~1f2> - ) +(&), (B2

APPENDIX C: FOURIER-BASED MODEL SELECTION

Here we discuss the choice of the test function for the
model fitting estimate of delay. The first question which
arises in the implementation of the MFE algorithm is related
to the determination of the particular terms in the double
Fourier series that approximatasp, or A¢,. The choice of
the harmonics depends on the balance between reducing
computational cost and ensuring numerical stability and
quality of the fit from the limited amount of data. Practically,
the identification of dominant terms of the coupling function
can be done by means of the two-dimensional discrete Fou-
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FIG. 10. The theoretical dependence of the error of the optimal
fit on the shift between the time series of phages Eq(B2)]. The FIG. 11. (Color online Two-dimensional discrete Fourier trans-
position of the minimum of the error coincides with the true value form F?(k,,k,) of the phase incremem¢;=Ap,(by, p,) for two
of the delayT=50. The value of the minimum is determined by the unidirectionally coupled Stuart-Landaleft pane) or Rossler(right
noise level in the driven system. pane) oscillators[see Eqs(18) and(19)]. Gray scalesgcolors code
the magnitude of thésignifican) Fourier coefficients. Only the first

rier transform of A¢(¢;,é,) over the [0,2m)x[0,27)  ten harmonics are shown.

plane: ~
Namely, we compute the Fourier coefficierftgk,, k) for

N-1M-1 it 100 realizations of the randomly shufflelp and take
F(ky ko) = m% 204 A(, )97, (CL) (max(F2(ky,ky)) as the threshold value, whefemeans av-
eraging over the realizations of surrogates. It means that for

wherek; , denote the spatial frequencies along #eand ¢, the model f|tt|ng~we use only the ternfls;,k,) which satisfy
coordinates, respectivelgHere the phases are taken modulo F?(ky,k,) =max(F3(k;,k,)). An example of this analysis is
27.) The pointsA¢(¢1, ¢,) are not regularly distributed in  given in Fig. 11. In particular, we can see that the modeling
the phase plane. Therefore, in order to make use of the fasf the chaotic system requires essentially more terms than
algorithm for the two-dimensional Fourier transform, we per-the modeling of the simple limit cycle oscillator.
form the Delaunay-triangulation-based cubic interpolation on  Note that the presented approach is feasible only when
a uniform grid on the squar®, 27) X [0, 27) with the grid  noise in the otherwise synchronous oscillators or quasiperi-
step 27/100. The Nyquist theorem provides the upper limit odic dynamics ensure a quite uniform scattering of phase
of the frequencies resolved by these da&@?*=k}®=50, points over the[0,2m)X[0,27) square. The described
which, under assumption that the coupling functions in EqsFourier-based model selection could be also exploited for an
(1) are smooth, can be considered as sufficiently large testimation of the directionality of coupling0-34 that re-
prevent aliasing. quires model fitting by Fourier series as well. For a general
The next step is the choice of the significant Fourier co-discussion of nonparametric model reconstruction see, e.g.,
efficients. For this purpose we perform a surrogate data tesf35-39.
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